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THE EFFECTIVENESS OF DAMPERS FOR THE
ANALYSIS OF EXTERIOR SCALAR WAVE
DIFFRACTION BY CYLINDERS AND ELLIPSOIDS
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SUMMARY

The technique of dampers is now widely used in the numerical analysis of unbounded problems. The
dampers are used to absorb the outgoing waves. This paper will consider in detail the best formulations
of damper methods. Examples will be given showing the effectiveness of three different dampers, in
two dimensional and three dimensional models. The geometries considered are circular and elliptical
cylinders, spheres and ellipsoids. The results indicate that dampers are indeed very effective, particu-
larly those of higher order, which have recently been developed by Bayliss et al."? and others.

1. INTRODUCTION

The types of wave problem for which these dampers can be directly used are exterior scalar
wave problems. Important examples of these include

(i) surface water waves—wave forces on offshore structures, diffraction and refraction of
waves in the coastal zone
(ii) pressure waves in fluids—depth charge problems, sonar, fluid-structure interaction
(iii) pressure waves in elastic media—earthquakes and vibration
(iv) electromagnetic waves—aerials, waveguides.

The two examples considered in the remainder of the paper are linear free surface waves in
two dimensions and compression waves in three dimensions. Such waves are governed by the
Helmholtz equation

Vio+k*¢p=0 (1)

where ¢ is the scalar wave variable, and k is the wave number, given by the frequency, w,
divided by the wave speed, c. In water of constant depth, h, with an acceleration due to
gravity, g, the velocity of the surface wave, ¢ is (gh)'/>. The velocity of compressive waves is
¢ =(K/p)'"*, where K is the bulk modulus and p is the density. The technique of dampers is
of course applicable to vector wave propagation, but this will not be considered here.

2. EXTERIOR WAVE PROBLEM

Waves are considered whose wavelength is long compared with the fluid depth and whose
amplitude is small. Assuming that the fluid is incompressible and motion is irrotational, the
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wave equation governing the flow can be derived from the continuity equation and the
momentum equations in the form
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A more general theory which includes long waves and short waves has been developed by

Berkhoff® and has been implemented in the finite element context by Bettess and Zien-
kiewicz.* Berkhoff’s wave expression corresponding to equation (1} is

ety lngy] -0 @

where ¢ is the wave speed and ¢, is the group velocity. As the theme of this paper is to
compare the accuracy of these dampers, the simple constant depth model expressed by
equation (1) is adopted. In the case of constant depth equation (1) reduces to

¥¢a%
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where k = w/(gh)"? is wave number and o is angular frequency. In the above, it is assumed
that velocity potential is periodic, e.g.

d(x, y, 2, t) = d(x, y, z)e ™" @)

Thus wave motion is generally described by the Helmholtz equation. When the scattering
of surface waves due to circular or elliptical cylinders is calculated, equation (3) will have to
be solved.

On the other hand, in three dimensional problems the scattering of waves, such as sound
waves or compressive waves, diffracted by a sphere or ellipsoid in homogeneous infinite
domains is dealt with. Then the basic equation to be solved is

G 62<{> 3¢
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The boundary condition at infinity will be dealt with in the following section.

3. RADIATION BOUNDARY CONDITION

The boundary condition at infinity is required in order to solve potential problems described
by the Helmholtz equation in an infinite domain. This condition is the so-called Sommer-
feld’s radiation condition.’ The uniqueness of the solution satisfying this condition has been
proved for periodic problems.®

Sommerfeld’s radiation condition corresponding to equations (3) or (5) can be expressed
as

nmﬂwﬂflw] _ (6)
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where r is the distance from any fixed point and h is the number of dimensions, and O(f(r))
means a quantity of order not greater than f(r) for large r. However it is difficult to
incorporate equations (6) or (7) directly into FEM programs, since they are in the form of a
limit. Here we describe three forms of the radiation condition corresponding to the number
of dimensions involved. This explanation should clarify the property of each damper.

3.1. One dimensional problems

The fundamental solution for the one dimension Helmholtz equation is exp (ikr) where r is
the distance from a singular point. Now the potential ¢ can be in general written as

d=F,(r—ct)+G(r+ct) (8)

In the equation above F, stands for outgoing waves and G, for incoming ones. As only the
outgoing waves should satisfy the radiation condition, G, is now required to vanish. By
eliminating F,, we obtain

ar c ot
For periodic motion this condition becomes
ad . -
b_ ik =0 (10)
ar

This boundary condition can be easily incorporated in FEM programs as a plane damper, as
was shown by Zienkiewicz and Newton.’

3.2. Two dimensional problems

For two dimensional problems, the derivation is more complicated than for one dimen-
sional problems. This is because the two dimensional fundamental solution is the Hankel
function and the potential ¢ cannot be written strictly in such a form as equation (8). But the
Hankel function of the first kind of order zero. Hj(kr) can be approximately expressed for
large r as follows:

2 \12 112
Hi(kr)~ exp (i(kr — w/4)) (—) =C (—) eir v
Tkr r
where C is a constant independent of r. When the periodic term exp (—iwt) is taken into
account, for large r the potential ¢ can be written as

& = Fy(r—ct)/(n'? 12)

In the same way as for the one dimensional problems, the following simple radiation
conditions can be obtained.

b 1 1a¢

ar+2r¢ c ot 0 (13)
or

b 1 - . -

0 F—ikd= 14

6r+2r¢ ik =0 (14
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Equations (13) and (14) describe the radiation conditions for the outgoing waves at infinity
which progress uniformly in any direction. We will call the damper formulated by equation
(14) the cylindrical damper.

3.3. Three dimensional problems

In the same way as in the one dimensional problem the potential ¢ can be generally
written as

¢ =Fs(r—ct)/r (15)
and the radiation condition for three dimensional problems is
ap 1 19
a—(f+7¢+26_(f:0 (16)
or
%4-%(5—&(5:0 17

Equation (17) is derived under the assumption that outgoing waves propagate uniformly in
all directions. The damper described by equation (17) is here called a spherical damper.

These boundary conditions described above should be imposed at infinity. However these
dampers are placed not at infinity but at a finite distance. One of the main purposes is
therefore the comparison of the accuracy when each damper element is set up at a finite
distance from distrubance such as a cylinder.

4. HIGH ORDER DAMPER THEORY

Recently a theory has been developed by Bayliss. Gunzberger and Turkel for higher order
damper boundary conditions. For completeness the entire necessary theory will be outlined
here. The first essential step is to prove that any wave can be expressed in series form,
following Atkinson® and Wilcox.? Next the series form is used to obtain a series of operators
which then define a set of dampers of increasing order."* The proofs are different for two
and three dimensions. As the three dimensional proof is essentially simpler and more natural
it will be stated first.

Three dimensional damper theory

The starting point is Green’s second identity.
J’ (uVu—0V?u) dQ = J’ (uVo—ovVu) ds (18)
(9] S

where u and v are any two functions, which are defined in the unbounded domain, (),
exterior to the surface S, and which satisfy the following conditions as the radius, r, tends to
infinity

d av d av
rz_“’ rz%’ rzg 2 U rz_v, 220

ax ay 0z ax dy 08z
are bounded in absolute value for sufficiently large radius, r.

Let u =exp (ikr)/r, the Green’s function for the Helmholtz equation in three dimensions,
and consider the geometry shown in Figure 1. The domain Q is unbounded, and the
boundary S consists of two parts, S,, the surface of a sphere of radius r=a, and S,, the

ru,

5 ]
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n

Figure 1. Geometry

surface of a sphere of radius ¢, centred about the pole, P. v is taken to be the solution of the
Helmbholtz equation throughout Q. Now the volume integral of equation (18) reduces to

zero, and so R -
e " dv d e
—+p—|—1lds = 19
Ll+sz[R an Uar[R]] s=0 (19)

where R is the distance from the pole to a point Q on the surface S;.
Now let the sphere of radius £ be shrunk to a point. Clearly ds = 4me2, and the S, term

becomes
ike 1 ike
[e §9+u<ik——)e ]47782:—4111) (20)
g on e/ &
So now R
1 e*Rrav ( 1)]
=— ~—|—+vlik—=)|d 21
Tar ), [anvl R/ @D

We will expand v about a fixed point X. Let r, p, 8§ denote PX, XQ and 2PXQ,

respectively. Then
1

xX=r
R =(r*—2rp cos 8 + p?)'?
S 291/2
R—r=r[[1—gi‘1:ls-+%] —1] (22)

1
= ; {(1—2xp cos & + x2p2)1/2_ 1

r/R=(1-2xp cos 8 +x%p*) "/
ik —1/R =ik —x(1—2xp cos 8 +x%p>)
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Hence
eikR eikr lk 2
" =(1-2xp cos & +x2p%) 2 exp ;{(1 —2xp cos 8 +x%pH)* -1} (23)
r
eikR eikr . )
R may be expanded in a power series because the right-hand side is an analytic

function of x in the region |2xp cos 8 —x?p*| < 1. Assuming that v has continuous second

ikR ikrq—-1
derivatives on S, - [e?] [e ] a_v is also analytic. It follows that the following integral may
r n

be expanded in a power series.

[eikr]ﬁlLl [?]Eds— Y clx Z cr (24)

r an n=0

elk' —1 eikR 1
The same result holds for [ ] j — (ik ——)v ds. So
r s, R R

1

elkr 1
[ ] v= Z cr (25)
Therefore v can be expanded in a series form as follows:

v=e*Y do (26)
n=1
It is proved that the solution to the three dimensional Helmholtz equation can be written in
the expansion form.
Next we will obtain a sequence of boundary conditions which annihilate the first m terms
in the asymptotic expansion. The solution ¢ to the three dimensional Helmholtz equation
can be expressed as

& (6,
d=e*) (6. 4) 3 ¢) (27)
i=1
The operator L
d
=—ik+— (28)
or
is defined. When equation (27) is multiplied by r™, equation (29) is obtained.
e = e""z rmTif(6, ¢)+ et Z ™16, &) (29)

i= j=m+1

Applying the operator L™ to both sides of equation (29), the first sum of the right-hand side
of equation (29) obviously becomes zero. Hence

L"@"¢)=0G""") (30)

Equation (30) shows that the operator L™ can annihilate the first m terms in r™¢.
The operator acting only on ¢ should be obtained. Now we separate the operator L into
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the constant part L, and the differential part L, as follows

=2 G
or

and write L™(r"™¢) explicitly when m =1 and m = 2.
m=1
L(r¢) = (Ly+ Lo)(rd)
=Lr¢+rLyp+PLor
=r(Li+Ly)¢+¢
=rLd+d¢ (32)

or

L(rd)r=(L+1/Né (33)

Lz("zd?) =(L,+ Lz)z(rsz)
=(L1+ LYL,r*¢ +r’Ly¢ +2rd}
=r(L,+Ly)*¢+4r(L,+Ly)¢ +2¢
=r’L2¢p+4rLd +2¢ 34)
or
L3(r*¢)/r*= L% +4Ld/r+2¢/r?
=(L+3/r(L+1/nd (35)

On the analogy of equations (33) and (35) the new operator B,, is defined recursively as
follows.

-11 [—ik +5‘:’-+2j—“1] (36)

It is easy to prove that B,, defined above annihilates the first m terms in the expansion (26).
It then follows that

B,.d=0@G" (37
Thus the boundary condition
B, =0 (38)

matches the solution to the first m terms in equation (27) and it is clear that the more
accurate results can be obtained by applying the higher order boundary conditions.

One difficulty is that the infinite series of operators in equation (36) generates higher and
higher derivatives with respect to r. This leads to difficulties in a finite element model.
However the order of the highest derivative can be reduced by using the Helmholtz equation
itself. Now the following boundary condition is considered:

B, =0 (39)
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The B, operator is
Y L0 01
B,=|—-ik+—+— )| —ik+—+~—
ar d

r ror
9’ 3 4ik
= (—2+fi+—25—k2—2ik——i) (40)
or° raor r or
Helmholtz’s equation may be written in spherical co-ordinates (7, 8, 8) as
62¢ 2a¢> cos 6 ap 1°¢ 1 &é, .,
—+ +k 0 41
or* rar rsmeae 2962 r*sin 6882 ¢= 1)
2
o can be eliminated from equations (40) and (41), so that
r
29 ] 4ik
B =222 5 k—(b (——2k2 i>¢
r or r r
18 0 9 1 8
Tb__cosh o6 ¢_o 42)

12902 r2sinf 00 r’sin® 6 952

For simplicity only axisymmetric problems will be dealt with, and the potential ¢ is assumed
to be independent of the 8 co-ordinate. Then equation (42) is reduced to

23¢ ad ( » 41k) 18¢ cos@ 3¢
B = t-2ik L4 (5 -2k - ) g - S-S0 3
26 r ar r ¢ r236% r’sin 0 86 =0 (43)

Further, the artificial surface on which the boundary condition (39) is imposed is assumed to
be spherical and the distance along the boundary s is introduced:

s=r0 (44)
Equation (43) can be rewritten as

(——2 k)—d—’+( 2k2—ﬂc)¢—a—2i’——cos—“—¢=o (45)

r 3s? rsin @ as

or
dd P cos 8 3¢
—+ —_ — —_—— —
ar ab—p 38> Brsin 0 3s 0 (46)
where 7
28/
r r r
1ok
r
Nt
T 2w

Now for the element formulation, the boundary integral

2

- ffgor2y e

0
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is used. Considering that & is independent of 8, equation (47) is reduced to

A= ‘.2]: [9¢2+§(§-‘1’>2]r sin 6 dé ds

2 2 \ds
(50462
= ||=¢2+
"[qu >\3s 27r sin 0 ds
= |Fds (48)

The variation of F generates the boundary condition.’

BF 0 oF
[Fl, = o s [a(aF/as)]
aqu cos 0 3¢ .
( ¢ B -8 rsin 6 8s)2wr sin 6
=0 (49)

i}
The term a—d) arises as the natural boundary condition.
r

Equation (48) can be easily incorporated into FEM programs as higher order damper
elements. Note that the first order operator B, is identical to the spherical damper defined in
equation (17).

Two dimensional damper

For two dimensions the convergent expansion is given by Karp'® as follows:

&= Ho(kr)_z ———(0—)+H1(kr)i _c_;_l;(’_o) (50)

where H, and H, are the Hankel functions of the first kind of orders 0 and 1. However these
are not easy to work with. So another series, which is asymptotically true for large r, is
adopted.
: )1/2 i(fer —r/4) v fi(0)
— (= eikr—m ' 51
¢ (wkr ; r (1)
This equation corresponds to equation (27) for three dimensions. ThlS expansion leads to a
series of operators in the same way as in three dimensions.

U I =3/2
B, =j=H1 [5+(—]—r—/—)—ik] (52)
B,¢=0(""""% (53)
Now the boundary condition specified by operator B, is considered:
B, =0 (54)

If the boundary is strictly circular, equation (54) can be expressed as follows:

0, o gFb_
5, Teb—B-5=0 (55)
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where

Therefore for an element implementation, the line integral

g2

is obtained.®!! The two dimensional higher order damper discussed in this paper is based on
equation (56). It is important that the first order operator B; coincides with the cylindrical
damper described by equation (11).

5. NUMERICAL RESULTS

It is interesting to estimate the errors of these dampers in different parameter ranges.
1. The error for fixed k and m as the position of the artificial surface, i.e. ry, varies.
2. The error for fixed k and r; as the order of the boundary operator m increases.
3. The error for fixed r; and m as the wave number, k increases.

In view of this, four problems were solved to check the accuracy and the behaviour of each
damper.

First the surface waves scattered by a cylinder standing in shallow water with constant
depth were analysed and the three items above were investigated (circular cylinder problem).
Further, in order to compare the effectiveness of each damper the following three problems
were solved: surface waves hitting an elliptical cylinder (elliptical cylinder problem), and
waves scattered by a sphere or an ellipsoid in a three dimensional homogeneous domain
(sphere and ellipsoid problems, respectively). The radii of the cylinders and spheres consi-
dered here are 1-0 and the major and the minor axis lengths of the elliptical cylinder and the
ellipsoid are 2-0 and 1-0, respectively. As the basic solution, the analytical solution'? is used
in the cylinder and sphere problems, the numerical solution by using fine finite elements and
boundary integrals is adopted for the elliptical cylinder problem and the numerical solution
by using fine finite elements and infinite elements for the ellipsoid problem. All three
dimensional examples were analysed as axisymmetric problems.

5.1. Circular cylinder problem

Figures 2-4 show the numerical results when the wave number k varies. The real and
imaginary parts of the wave elevation around a cylinder are illustrated. The relative error
around a cylinder, which is defined by (In,|—|m.))/|m.] where m,, n, are the numerical and
analytical values respectively, are shown in Table I. The finite element mesh used is shown in
Figure 5@i). It is seen that the results by using higher order dampers are quite close to
theoretical values in any case and the errors of plane dampers are larger than the others.

Next, examples were calculated in which the wave number is considered to be 1-0 and the
outer radius and the number of elements in the radial direction are changed. The meshes
used when the outer radii are 1-5, 4-0 and 7-0 are shown in Figure 5. Table II and Figure 6
show the relative errors around a cylinder produced using each damper. It is seen that the
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Table 1. Relative (percentage) errors in circular cylinder problem (r=1-5, n=1)

0 Damper k=02 k=05 k=10 k=20 k=40
Plane -12-1 -31-3 —34-8 —24-8 162
0 Cylindrical -3-0 -12-4 -16-9 -13-8 12-5
Second order -1-1 -1-5 0-3 -2-3 -4-6
Plane 3.8 10-0 1-8 —4-8 36

90 Cylindrical -0-3 -1-0 -3.7 02 7

Second order —-0-5 03 0-7 0-1 0-9
Plane 286 13-0 ~6-0 -7-7 0-6
180 Cylindrical 4-8 1-1 0-6 -2:0 -1-3
Second order 0-5 -0-6 0-0 —0-1 -11

k = wave number

r=outer radius

n =the number of elements in the radial direction
8 = angle around a cylinder in degrees

Table II. Relative (percentage) errors in circular cylinder problem (K = 1-0)

r=15 r=20 r=2-5 r=30 r=35 r=40 r=45 r=50 r=55 r=60 r=70
[} Damper n=1) n=2) (n=3) (=4 =5 M=6 =7 =8 H=9 (n=10) r=12)

Plane ~34-8 —9-8 22 65 52 12 -2-5 -3-1 -1-0 1-1 1-1
0 Cylindrical -16-9 -5.1 —0-3 3-0 19 00 -1 -1-0  -02 0-6 0-1
Second order 0-3 0-1 0-0 —0-1 0-0 0-0 0-0 0-0 0-0 0-0 0-0

Plane -8 —29 —60 -53 -06 3-5 3-5 3-6 11 -1.8 27
90 Cylindrical -37 -14 -06 -03 -01 0-3 0-4 02 —-01 -02 0-1
Second order 0-7 0-1 -0-1 0-0 0-0 0-1 0-1 0-0 0:0 0-0 0-0
Plane 60 -83 —45 1-8 62 4-6 46 -0-8 —-48 35 -0-3
180 Cylindrical 0-6 0-7 1-0 06 —01 -0-1 -0-1 0:0 0-2 02 -02

Second order 0-0 0-1 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0

Table III. Relative (percentage) errors in circular cylinder problem (k =1-0, r =7-0)

0 Damper n=2 n=3 n=4 n=>5 n=6 n=12
Plane 56 22 1-5 1-3 1-2 1-1
0 Cylindrical 4-5 1-2 0-5 0-3 0-2 0-1
Second order 4-3 1-0 0-4 0-2 0-1 0-0
Plane -84 04 05 0-9 1-1 1-3
90 Cylindrical -85 -1-5 -0-7 —-0-4 —-0-2 0-1
Second order -84 -1-5 —-0-8 -0-4 -0-2 0-0
Plane -0-3 42 37 3-5 3-4 3-3
180 Cylindrical -3-3 07 02 0-0 —-0-1 —-0-2
Second order —-5-4 0-9 03 0-2 0-1 0-0
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Figure 6. Comparison of relative errors for various outer radii (k = 1-0). Relative error = Y
Ma

results converge in an oscillatory way. The second order dampers can give very good
accuracy even near the cylinder. If the allowable error is assumed to be 1 per cent, the
number of elements in the radial direction is required to be 1(r,, = 1-5) for higher order
dampers, 8(r,., =5-0) for cylindrical dampers and more than 12 for plane dampers. Thus the
outer boundary, when first order dampers (cylindrical dampers) are used, should be set up
about 3 times further out than in second order dampers. It is clear that second order
dampers are very effective and can reduce program size and computational cost.
The relative errors are shown in Table III when the wave number and outer radius of the
FEM region are fixed and the fineness of the discretization varies. It is natural that the
results should improve as the number of the elements increases. The coarse mesh, n=1,
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which is considered as the number of elements per wavelength, always gives meaningless
results and, even in the case of n =2, the agreement is not good and the higher order effect
does not come out. On the other hand, when the fine mesh, n =12, is used, the agreement
between theory and numerical results by cylindrical or second order dampers is extremely
good. These facts indicate that even when the outer radius is far from a structure, we should
divide one wavelength into 4 or more elements to obtain accurate results and when the outer
radius is placed at a distance of one wavelength from a structure and the fine mesh is used,
the difference between first and second order dampers vanishes.

5.2. Elliptical cylinder problem

It was felt that a test in which the obstacle was not itself cylindrical would show whether
the improvement in results using cylindrical and higher order dampers was a real improve-
ment or partly due to the shape of the obstacle.

Using two kinds of meshes shown in Figure 7, the elliptical problem was solved. Table IV
shows the relative errors around an elliptical cylinder. There is no difference due to the angle of
incident waves in any dampers’ results. The numerical values by higher order dampers are
extremely close to the basic ones in both cases, n=1 and n=6. In the case n =26, the
agreement between numerical values by cylindrical dampers and basic ones is good and the
errors produced using plane dampers are larger. Thus the results from the elliptical cylinder
problem are quite similar to the results from the cylindrical problem.

5.3. Sphere problem

Waves scattered by a sphere in an infinite homogeneous domain were calculated using the
meshes shown in Figure 5 (r,=1-5, 4-0, 7-0). The wave elevation along the surface of a
sphere is plotted in Figures 8 and 9 and the relative errors are shown in Table V. In the
sphere problem we have the following results which are similar to two dimensional results.
Higher order dampers give quite good results and can reduce the number of finite elements,
and the results by plane dampers are rather poorer.

5.4. Ellipsoid problem

The final problem is the same as the sphere problem except that an ellipsoid is used
instead of a sphere. The numerical results are given in Table VI. As in the above problems,
higher order dampers give excellent results even when the outer boundary is placed close to
the structure.

6. CONCLUSION

Some infinite potential problems described by the Helmholtz equation have been solved to
evaluate the accuracy of four different kinds of dampers. Of these dampers, those developed
by Bayliss et al. are expressed in a series form and can be considered as generalizations of
dampers. For example their first order dampers coincide with cylindrical dampers in two
dimensional problems and spherical ones in three dimensional problems.

" In this paper, four kinds of geometries were considered, i.e. circular and elliptical cylinders
and spheres and ellipsoids. In all geometries the resuits were consistent. Cylindrical,
spherical and higher order dampers are accurate and the results obtained by higher order
dampers are close to theoretical values. Second order dampers typically require less than half
the number of finite elements to keep the same level of accuracy as first order dampers.
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Figure 7. Element meshes

Numerical values tended to converge in an oscillatory manner as the outer radius increased.
It was also found that it is usually necessary to divide one wavelength into 4 or more
elements in order to obtain accurate results. Plane dampers, which are those most frequently
used in practice, have the lowest accuracy.

Thus it is clear that cylindrical, spherical and higher order dampers are very effective in
point of the accuracy as well as programming and computational cost, and particularly the
second order damper is one of the most effective techniques for the analysis of unbounded
problems. The method of Bayliss et al. can be strongly recommended, particularly as its extra



Table IV. Relative (percentage) errors in elliptical cylinder problem (k = 1:0)

Angle a=0-0 a =450 a=90-0
r=1-5 r=4-0 r=1-5 r=4-0 r=1-5 r=4-0
0 Damper (n=1) (n=6) (n=1) (n==6) (n=1) (n=6)
Plane -9-1 1-2 -25 0-9 2-5 2-6
0 Cylindrical -5-9 —-0-2 -3-3 —-0-4 —0-1 0-0
Second order 0-4 01 0-4 0-0 0-1 0-0
Plane 24 26 -34 —4-2 -21-5 -0-6
90 Cylindrical —0-2 0-0 -2-0 1-8 —8-4 1-6
Second order 0-1 0-0 0-9 0-0 0-9 0-0
Plane —-3-8 27 -2-6 30 2-5 2:6
180 Cylindrical 0-4 —0-1 0-0 0-0 —-0-1 0-0
Second order —-0-1 0-0 -0-1 0-0 0-1 0-0
Plane — — -10-3 4-8 -13-8 4-9
270 Cylindrical — — -3-6 -0-2 —-4-2 —0-3
Second order — — 0-1 0-0 0-2 0-0
o = angle of incident waves in degrees.
200 o Plane damper q
o  Cylindrical damper
160 F ®  Second order damper 1
120 b
q
-
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2
& 040
i._
<
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Figure 8. Comparison of wave diffraction by a sphere using three types of dampers (k=10,7r,,=13)
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Figure 9. Comparison of wave diffraction by a sphere using three types of dampers (k =10, r_, =4.0)

Table V. Relative (percentage) errors in sphere problem (k =

1-0)

r=1-5 r=4-0 r=7-0

0 Damper n=1) (n=6) (n=12)
Plane —23-3 -0-7 -1-0
0 Spherical —-9:4 0-7 0-2
Second order 0-2 ~-0-1 -0-1
Plane 9-8 -0-1 -0-9
90 Spherical 0-0 0-0 0-0
Second order 0-4 0-0 0-0
Plane -2:3 6-6 1-6
180 Spherical -1-2 0-5 0-1
Second order —0-4 -0-1 -0-1
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Table V1. Relative (percentage) errors in ellipsoid problem (k = 1-0)

Angle a=0-0 a=90-0

r=1-5 r=4-0 r=1-5 r=4-0

0 Damper (n=1) (n=6) (n=1) (n=6)
Plane -5-2 -0-5 6-0 0-5
0 Spherical -1-8 0-2 0-0 0-1
Second order 0-1 0-0 01 0-1
Plane 3-0 —-0-4 13-5 0-6
90 Spherical -0-1 0-0 -5.7 0-4
Second order -0-1 0-0 0-1 01
Plane 0-6 1-4 6-0 0-5
180 Spherical -0-8 -0-9 0-0 01
Second order -0-3 -0-1 0-1 0-1
Plane — — 1-6 3-0
270 Spherical — — -1-3 0-5
Second order — - -0-1 -0-1

computational expense is negligible. In view of the success of the second order dampers, it
would appear to be worth while to investigate third and higher order versions, although this
has obvious difficulties. It also might be feasible to develop two dimensional dampers which
use the more theoretically correct Hankel functions.

11.

12.
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